Mount Sinai researchers develop COVID-19 mortality prediction model

IMAGE: Evaluation results for test datasets 1 (A) and 2 (B) are shown here in terms of the ROC curve

توسط MOHAMADREZASITE در 2 مهر 1399
IMAGE

IMAGE: Evaluation results for test datasets 1 (A) and 2 (B) are shown here in terms of the ROC curves obtained, as well as their AUC scores, with 95% CIs in... view more 

Credit: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai

Bottom Line:

Given the toll that the COVID-19 pandemic has taken on people's health and lives worldwide, it is crucial to be able to accurately predict patients' outcomes, including their chances of mortality from the disease. Using the largest clinical dataset to date, and a systematical machine learning framework, the research team at Mount Sinai identified an accurate and parsimonious prediction model of COVID-19 mortality.

This model was based on only three routinely collected clinical features, namely patient's age, minimum oxygen saturation over the course of their medical encounter, and type of patient encounter (inpatient vs outpatient and telehealth visits).

This model could yield an additional "vital sign" that is assessed regularly during a patient's hospital course, that can be integrated into the clinical care flow of a COVID-19 patient. Clinical teams could use results from the prediction model throughout COVID-19 patients' hospital courses to flag individuals at high risk of death so that they can promptly focus treatment and attention on such individuals to prevent their mortality.

Main Findings:

Using the largest development dataset yet (n=3841), and a systematic machine learning framework, we developed a COVID-19 mortality prediction model that showed high accuracy (AUC=0·91) when applied to test datasets of retrospective (n=961) and prospective (n=249) patients. This model was based on three clinical features: patient's age, minimum oxygen saturation over the course of their medical encounter, and type of patient encounter (inpatient vs outpatient and telehealth visits).

Motivation of the research:

The COVID-19 pandemic has affected millions of individuals and caused hundreds of thousands of deaths worldwide;

"Predicting mortality among patients with COVID-19 who present with a spectrum of complications is very difficult, hindering the prognostication and management of the disease," said Dr. Gaurav Pandey, Assistant Professor of Genetics and Genomic Sciences. "We aimed to develop an accurate prediction model of COVID-19 mortality using unbiased computational methods, and identify the clinical features most predictive of this outcome."

###

Yadaw AS, Li Y-C, Bose S, Iyengar R, Bunyavanich S, Pandey G. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digital Health 2020; 2: e516-25, doi: 10.1016/S2589-7500(20)30217-X

Manuscript Title:

Clinical features of COVID-19 mortality: development and validation of a clinical prediction model

(https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30217-X/fulltext)

Journal:

The Lancet Digital Health

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.



tinyurlis.gdu.nuclck.ruulvis.netshrtco.de
آخرین مطالب
مقالات مشابه
نظرات کاربرن